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Abstract
Data locality is critical to achieving high performance on large-scale
parallel machines. Non-local data accesses result in communica-
tion that can greatly impact performance. Thus the mapping, or
decomposition, of the computation and data onto the processors of
a scalable parallel machine is a key issue in compiling programs for
these architectures.

This paper describes a compiler algorithm that automatically
finds computation and data decompositions that optimize both par-
allelism and locality. This algorithm is designed for use with both
distributed and shared address space machines. The scope of our
algorithm is dense matrix computations where the array accesses
are affine functions of the loop indices. Our algorithm can handle
programs with general nestings of parallel and sequential loops.

We present a mathematical framework that enables us to sys-
tematically derive the decompositions. Our algorithm can exploit
parallelism in both fully parallelizable loops as well as loops that
require explicit synchronization. The algorithm will trade off extra
degrees of parallelism to eliminate communication. If communica-
tion is needed, the algorithm will try to introduce the least expensive
forms of communication into those parts of the program that are least
frequently executed.

1 Introduction
Minimizing communication by increasing the locality of data ref-
erences is an important optimization for achieving high perfor-
mance on all large-scale parallel machines. The long message-
passing overhead of multicomputer architectures, such as the Intel
Touchstone[17], makes minimizing communication essential. Lo-
cality is also important to scalable machines that support a shared
address space in hardware. For example, local cache accesses on
the Stanford DASH shared-memory multiprocessor are two orders
of magnitude faster than remote accesses[26]. Improving locality
can greatly enhance the performance of such machines.

The mapping of computation onto the processors of a parallel
machine is termed the computation decomposition of the program.
Similarly, the placement of data into the processors’ local memories
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is called the data decomposition. This paper describes a compiler
algorithm that automatically finds the computation and data de-
compositions that optimize both the parallelism and locality of a
program. This algorithm is designed for use with both distributed
and shared address space machines. For machines with a distributed
address space, the compiler must follow this phase with a pass that
maps the decomposition to explicit communication code[2]. While
it is not necessary to manage the memory directly for machines
with a shared address space, many of the techniques used to manage
data on distributed memory machines can be used to improve cache
performance.

The choices of data and computation decomposition are inter-
related; it is important to examine the opportunities for parallelism
and the reuse of data to determine the decompositions. For example,
if the only available parallelism in a computation lies in operating on
different elements of an array simultaneously, then allocating those
elements to the same processor renders the parallelism unusable.
The data decomposition dictated by the available parallelism in one
loop nest affects the decision of how to parallelize the next loop nest,
and how to distribute the computation to minimize communication.
It may be advantageous to abandonsome parallelism to create larger
granularity tasks if the communication cost overwhelms the benefit
of parallelization.

A popular approach to this complex optimization problem is to
solicit the programmer’s help in determining the data decomposi-
tions. Projects using this approach include SUPERB[40], AL[34],
ID Noveau[31], Kali[22], Vienna Fortran[7] and Fortran D[14, 33].
The current proposal for a High Performance Fortran extension to
Fortran 90 also relies upon user-specified data decompositions[13].
While these languagesprovide significantbenefit to the programmer
by eliminating the tedious job of managing the distributed memory
explicitly, the programmer is still faced with a very difficult pro-
gramming problem. The tight coupling between the mapping of
data and computation means that the programmer must, in effect,
also analyze the parallelization of the program when specifying
the data decompositions. As the best decomposition may change
based on the architecture of the machine, the programmer must fully
master the machine details. Furthermore, the data decompositions
may need to be modified to make the program run efficiently on a
different architecture.

The goal of this research is to automatically derive the data and
computation decompositions for the domain of dense matrix code
where the loop bounds and array subscripts are affine functions
of the loop indices and symbolic constants. Our algorithm finds
decompositions for loops in which the number of iterations is much
larger than the number of processors. The emphasis of this paper is
on finding the first-order, or “shape”, of the decompositions. We do
not address issues such as load balancing,choosing the block size for
a block-cyclic decomposition, determining the number of physical
processors to lay out in each dimension, and fitting the computation
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and data to the exact number of physical processors. Even though
these issues impact the performance of parallel machines, their effect
is secondary and we do not address them in this paper.

We have developed a mathematical framework for expressing
and calculating decompositions. This framework is general enough
to handle a broad class of array access patterns, including array sec-
tions, and is also used to calculate the replication of read-only data.
As there are many possible decompositions for a program, a system-
atic solution must successfully reduce this complex problem into a
manageable one. Our model is based on the property that equivalent
decompositions have the same data and computation allocated to a
single processor. Once this aspect of the decomposition has been
determined, we show that an assignment to specific processors can
easily be calculated.

The cost of communication is determined by the data movement
pattern. If the communication pattern is nearest-neighbor shifts of
data, then the amount of data transferred can be significantly reduced
by blocking. This form of communication is inexpensive compared
to communication patterns that require general movement of the
entire data structure (e.g. a transpose). We further differentiate
between communication that occurs within a parallel loop with
explicit synchronization, or across loops due to mismatches in de-
compositions. We call communication within a loop nest pipelined
communication. Communication due to mismatches in decompo-
sitions, and that require moving the entire data structure, is called
data reorganization communication. If a single data decomposition
can be found for an array such that there is no reorganization com-
munication in the program, then we consider that decomposition to
be static (even though there may be some minor nearest-neighbor
communication between parallel loop nests).

Section 2 briefly presents the background on optimizing paral-
lelism and locality within a loop nest. We then introduce the issues
involved in automatically calculating decompositions, and formu-
late the problem mathematically. Section 3 describes the compo-
nents of a decomposition and gives an overview of our approach.
To illustrate the basic ideas behind our decomposition model, we
first discuss a simplified subproblem in Section 4. We present an
algorithm that finds data and computation decompositions that have
neither data reorganization nor pipelined communication. We then
reapply the concepts to find decompositions with pipelined commu-
nication in Section 5. Section 6 uses the algorithms in Section 4
and 5 as building blocks to develop an algorithm that takes into ac-
count both pipelined and data reorganization communication. Sec-
tion 7 presents additional techniques for handling replication, and
for minimizing the number of idle processors and the amount of
replication. We have implemented the algorithms described in this
paper in the SUIF compiler at Stanford. Section 8 describes some
experimental results using the compiler. Section 9 discusses re-
lated work, and we conclude in Section 10 with a summary of the
contributions of this paper.

2 Problem Overview
This section briefly discusses optimizations for parallelism and lo-
cality within a single loop nest, and introduces the issues involved
in finding decompositions by way of a simple example. After pre-
senting a mathematical formulation of decompositions, we then
formally state the problem.

2.1 Background
Techniques for maximizing parallelism and locality within a single
loop nesthave been presented in the literature[20, 25, 36]. A number

of researchers have also looked at the specific problem of mapping
a single loop nest onto parallel machines[15, 23, 24]. We refer to
such loop-level techniques as local analysis. The global analysis is
responsible for optimizing parallelism and locality across multiple
loop nests.

First, our compiler normalizes the loops and performs loop
distribution before executing the decomposition algorithms[1]. The
compiler runs a loop fusion pass after decomposition to regroup
compatible loop nests[5, 10].

Our compiler uses the algorithm developed by Wolf and
Lam[25, 36] to apply unimodular transforms to find the coarsest
granularity of parallelism within a loop nest. This pass leaves the
loop nests in a canonical form consisting of a nest of fully per-
mutable loop nests. The nests are as large as possible, starting from
the outermost loops. A loop nest is fully permutable if any arbitrary
permutation of the loops within the nest is legal. A fully permutable
loop nest of depth j can be transformed to get j� 1 degrees of par-
allelism. Our compiler positions the loops in each fully permutable
nest such that any parallel loops are outermost. For example, given
the following code:(1) for i1 := 0 to N do

for i2 := 0 to N do
Y[i1,N � i2] += X[i1,i2];(2) for i2 := 1 to N do

for i1 := 1 to N do
Z[i1,i2] := Z[i1,i2 � 1] + Y[i2,i1 � 1];

The local analysis would produce the code shown at the top of
Figure 1. The keyword forall indicates that the iterations of the
loop can be executed in parallel.

For a loop nest of depth l, let ik be the outermost parallelizable
loop (the first loop in the outermost fully permutable loop nest of
size greater than 1). Loops i1 : : : ik�1 are sequential (degenerate
fully permutable nests of size 1), thus there must be dependences
between iterations of these loops. The local phase is responsible
for finding transformations that minimize communication of loopsik : : : il with respect to the outer sequential loops. Parallelizable
loops are allocated such that any neighboring loops in the iteration
space are neighbors when mapped onto the processor space.

2.2 A Simple Example
Consider the code shown at the top of Figure 1. In the figure,
the array elements at (0; 0) and (0;N) are shaded light grey and
dark grey, respectively, to identify the position of the arrays. The
loop iterations are shaded similarly. The figure assumes that arrays
are stored in row-major order. A naive approach that considers
each loop nest individually would distribute the outermost loop i1
in the first loop nest, to get the coarsest granularity of parallelism.
Each processor then accesses rows of arrays X and Y . In the
second loop nest, the parallel i1 loop would be distributed, and
each processor accesses columns of array Y and rows of array Z .
Communication will occur, since a processor accesses a different
section of array Y in each of the two loop nests. A solution that
has no communication is to only parallelize the i2 loop in the first
loop nest. Each processor would then access columns of X , rows ofZ , and columns of Y in both loop nests. The loop nests must also
be analyzed to determine the relative positions of the arrays so that
no communication is necessary. A complete communication-free
decomposition is shown in Figure 1(c). The rest of the figure shows
the mathematical representation of the decompositions and will be
discussed in later sections.
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(1) forall i1 := 0 to N do
forall i2 := 0 to N do

Y[i1,N � i2] += X[i1,i2];(2) forall i1 := 1 to N do
for i2 := 1 to N do

Z[i1,i2] := Z[i1,i2 � 1] + Y[i2,i1 � 1];
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Figure 1: A simple decomposition example. Squares represent array
elements and circles represent iterations. Lines connect the array
elements and iterations that are allocated to the same processor.

2.3 Problem Formulation

This section presents a mathematical model of the decomposition
problem. We represent data and computation decompositions as
affine transformations. In this discussion, all loops are normalized
to have a unit step size, and all arrays subscripts are adjusted to
start at 0. A loop nest of depth l, with loop bounds that are affine
functions of the loop indices, definesan iteration spaceI , a polytope
in l-dimensional space. Each iteration of the loop nest corresponds
to an integer point in the polytope and is identified by its index vector~{ = (i1; i2; : : : ; il). An array of dimension m defines an array
space A, an m-dimensional rectangle. Each element in the array
is accessed by an integer vector ~a = (a1; a2; : : : ; am). Similarly,
an n-dimensional processor array defines a processor space P , ann-dimensional rectangle. We write an affine array index function~f : I ! A as ~f(~{) = F~{ + ~k, where F is a linear transformation
and ~k is a constant vector.

Definition 2.1 For each index ~a of an m-dimensional array, the
data decomposition of the array onto an n-dimensional processor
array is a function ~d(~a) : A ! P , where~d(~a) = D~a+ ~�D is an n � m linear transformation matrix and ~� is a constant
vector.

Definition 2.2 For each iteration ~{ of a loop nest of depth l, the
computation decomposition of the loop nest onto an n-dimensional
processor array is a function ~c(~{) : I ! P , where~c(~{) = C~{+ ~
C is ann�l linear transformation matrix and~
 is a constantvector.

The problem can now be stated formally as follows. We want to
find the computation decomposition~c(~{) for each loop nest, and the
data decomposition ~d(~a) for each array in each loop nest, such that
parallelism is maximized and communication is minimized. The
formal decompositions for the simple example from the previous
section are shown in Figure 1(c).

3 Basic Concepts

The problem of finding data decompositions ~d(~a) = D~a + ~� and
computation decompositions ~c(~{) = C~{ + ~
 can be broken down
into three distinct components using the affine model. The parti-
tion determines the computation and data that are allocated to the
same processor. Mathematically, data and computation partitions
are described by the nullspace of the matrices D and C from Def-
initions 2.1 and 2.2. The orientation, represented by the matricesD and C , describes the mapping between the axes of the array
elements and loop iterations, and the processors. Lastly, the dis-
placement gives the offset of the starting position of the data and
computation, and corresponds to the constant vectors ~� and ~
. We
illustrate the partition, orientation and displacement by developing
a communication-free decomposition for the sample program in
Figure 1.
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The Partition. There is a data dependence of (0,1) in loop nest
2 which serializes the i2 loop. No communication is necessary
when all the elements in each column of array Y and each row of
array Z are assigned to the same processor. Since the elements
in each column of array Y are on the same processor, iterations
of i1 in loop nest 1 are also assigned to the same processor and
execute sequentially (even though there are no dependences in loop
nest 1). In turn, the columns of array X are allocated to the same
processor as well. The partitions for this example are shown in
Figure 1(a). Informally, the data and computation partitions specify
which array elements and iterations, respectively, are assigned to
the same processor, but not which processor.

Formally, the subspace of the array space accessed by an array
referenced in a loop nest is denoted by S and is the range of the
array index matrix F : S = range(F ) (1)

For an array of dimensionm, whenever rank(F ) < m, thenS � A.
Let D be the data decomposition matrix from Def. 2.1. Two

array elements ~a1;~a2 2 S are allocated to the same processor if and
only if D~a1 = D~a2;
that is, D(~a1 � ~a2) = 0; or ~a1 � ~a2 2 kerD:
Conversely, any two array elements such that (~a1;~a2 2 S) ^ (~a1 �~a2 62 kerD) may be assigned to different processors and are con-
sidered distributed.

Let C be the computation decomposition matrix from Def. 2.2.
Two iterations ~{1;~{2 2 I are executed on the same processor if and
only if C~{1 = C~{2
that is, C(~{1 �~{2) = 0; or~{1 �~{2 2 kerC:
Any two iterations~{1 ;~{2 2 I such that~{1�~{2 62 kerC are said to be
distributed and may run on different processors. The mathematical
representation of the partitions for the example is also shown in
Figure 1(a). The data partitions for X and Y indicate that all array
elements along the direction (1;0) (i.e. each column) are assigned
to the same processor. Similarly, the data partition for Z means
that all elements along the direction (0;1) are assigned to the same
processor. The computation partitions indicate that all iterations of
the i1 loop in the first loop nest, and all iterations of the i2 loop in
the second loop nest, are executed on the same processor.

The Orientation. The partition determines which array elements
and iterations are local to a single processor. The orientation to-
gether with the displacement can now specify the processor on which
the data and computation are allocated. In particular, the orientation
gives the correspondencebetween the data and computation dimen-
sions and the processor dimensions. In loop nest 1, the columns
of array Y are accessed in the reverse order from the columns ofX . In loop nest 2, the columns of array Y are accessed in the same
order as the rows of array Z . One solution that satisfies all these
requirements is to allocate the columns of X in forward order, and
the columns of Y and the rows of Z in reverse order. The iterations
of the i1 loop in loop nest 2 must now be reversed as well. The
orientation is illustrated in Figure 1(b).

Formally, the matrixD from Def. 2.1 defines the data orientation
and the matrix C from Def. 2.2 is the computation orientation. The
matrices for the example are also shown in Figure 1(b). Note

that there exist many different communication-free orientations, all
with the same partition. For this example, we could just have
easily chosen to allocate the columns of X in reverse order, and the
columns of Y and the rows of Z in forward order. This alternative
orientation would result in DX = [0 � 1], DY = [0 1] andDZ = [1 0], with C1 = [0 � 1] and C2 = [1 0].
The Displacement. The displacement specifies the offsets of the
array elements and iterations with respect to the processors. In
loop nest 2, accesses by the i1 loop to the columns of array Y are
offset by one from the rows of array Z . In loop nest 1, accesses
to arrays X and Y have no offset. Assigning columns 0::N of
array X on processors 0::N , the columns of Y on processors N::0
and the rows Z on processors N + 1::1 satisfies this requirement.
Iterations 1::N of loop i1 in the secondloop nest are then assigned to
processorsN::1. The complete decompositions with displacements
are illustrated in Figure 1(c).

Formally, the displacements ~� and ~
 are the constant vectors
from Definitions 2.1 and 2.2, respectively. The orientation matrix
derived from the partition, plus the displacement forms the complete
decomposition. Figure 1(c) also shows the data and computation
displacements and the final decompositions for the example. As
was the case with orientations, there are also many possible dis-
placements that lead to communication-free decompositions.

We can now summarize the basis of our approach. There are
many different, yet equivalent, decompositions with the same par-
tition. We reduce the complexity of finding the decomposition
functions ~d(~a) for each array and ~c(~{) for each loop nest by first
finding a partition that is guaranteed to lead to the desired decompo-
sition. Then a simple calculation can be used to find the appropriate
orientations and displacements that completely specify the decom-
positions.

4 Static Decompositions
In this section, we present an algorithm to find data and computation
decompositions that have neither pipelined communication nor data
reorganization communication. This simplified problem illustrates
the basic ideas of our decomposition model. The algorithm finds a
single, static decomposition for each array and each loop nest, and
only considers the parallelism available in forall loops.

4.1 Relationship Between Data and Computa-
tion

No communication will occur when the data is local to the proces-
sor that references that data. This relationship between data and
computation is expressed by the following theorem.

Theorem 4.1 Let the computation decomposition for loop nest j be~cj and the data decomposition for arrayx be ~dx . Let ~fxj be an array
index function for array x in loop nest j. For all iterations ~{, the
elements of the array will be local to the processor that references
those elements if and only ifDx(~fxj(~{)) + ~�x = Cj(~{) + ~
j (2)

Communication at the displacement level is inexpensive since
the amountof data transferred can be significantly reduced by block-
ing. Thus the priority is in finding the best partitions and orienta-
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tions, and we first focus on the version of Eqn. 2 that omits displace-
ments. Letting ~fxj(~{) = Fxj(~{) + ~kxj ,DxFxj(~{) = Cj(~{) (3)

Given the array index function matrices Fxj for each array x in
each loop nest j, a decomposition is free of reorganization commu-
nication if the data decomposition matrix Dx and the computation
decomposition Cj are such that Eqn. 3 is true. A trivial solution
that guarantees no communication is to execute everything sequen-
tially by setting all computation decomposition matricesC = 0 and
all data decomposition matrices D = 0. Therefore kerC would
span the entire iteration space I and kerD would span the entire
array space A. However, maximizing parallelism means finding
data and computation decompositions such that the partition kerC ,
the nullspace of C , for all loop nests is as small as possible.

4.2 Partition Constraints
We first consider the base case of at most one outer sequential loop
containing a number of perfectly nested loops. We assume that the
local phase has analyzed and transformed the perfectly nested loops
individually into canonical form. In section 6.4 we will discuss the
general case of multiple nesting levels.

A collection of loops nests and arrays is represented as a bipartite
interference graph, G = (Vc; Vd; E). The loop nests form one set
of vertices Vc , and the arrays form the other set of vertices Vd. There
is an undirected edge e 2 E between an array and a loop nest if the
array is referenced in the loop nest. Each edge contains one or more
array index functions for all accesses of the array in the loop nest.

Each connected component of the interference graph corre-
sponds to a set of arrays and loop nests that have inter-related de-
compositions. The algorithms presented later in this section operate
on a single connected component at a time.

To find a static decomposition, the following constraints are
placed on the data and computation partitions.

(1) Single Loop Nest. The constraints on a single loop nest char-
acterize the loops that are assigned to the same processor. These
constraints are used to initialize the computation partition for each
loop nest. As this algorithm considers only forall loops, the initial
computation partition for a loop nest of depth l is the span of a set ofl-dimensional elementary basis vectors1 representing the sequential
loops in the loop nest. If a loop at nesting level k is sequential, thenek is included in the initial computation partition.

(2) Multiple Arrays. The role of the constraints due to multiple
arrays is to ensure that there exists a single data decomposition
matrix D for each array. These constraints are used to initialize
the data partitions. Such constraints are necessary if there are two
distinct paths in the interference graph from an array x to another
array y. For example, consider the following code fragment:(1) forall i1 := 0 to N do

forall i2 := 0 to N do
X[i1,i2] += Y[i1,i2];(2) forall i1 := 0 to N do

forall i2 := 0 to N do
Y[i2,i1] := X[i1,i2];

1The kth elementary vector, written ek, has a 1 in the kth position and zero in all
other positions.

The array index functions for X and Y in the first loop nest areFX1 = FY 1 = h
1 0
0 1

i
. The array index functions for X andY in the second loop nest are FX2 = FX1 and FY 2 = h 0 1

1 0

i
,

respectively.
A decomposition that is free of reorganization communication

will have decomposition matrices DX and DY (for arrays X andY , respectively) such that Eqn. 3 holds for some C1 and C2 (for
loop nests 1 and 2, respectively). For iterations~{1 in loop nest 1 and~{2 in loop nest 2, we have the following:DXFX1(~{1) = DY FY 1(~{1) = C1(~{1)DXFX2(~{2) = DY FY 2(~{2) = C2(~{2)
Since the array index functions are invertible, these equations pro-
duce the following equations for DY : DY = DXFX1FY 1

�1 andDY = DXFX2FY 2
�1. Thus,DX(FX1FY 1

�1 � FX2FY 2
�1) = ~0: (4)

and (FX1FY 1
�1 � FX2FY 2

�1) 2 kerDX .
If all the array access functions for each array are equal then

the above equation will yield DX~0 = ~0 and ~0 2 kerDX , and
no additional constraints are placed on the partitions. In the

example, Eqn. 4 is DX�h 1 0
0 1

i � h 0 1
1 0

i� = ~0. Thus,DX�h 1 �1�1 1

i� = ~0. Simplifying the equation gives a con-

straint on the partition of array X: kerDX � spanf(1;�1)g. Sim-
ilar analysis yields the same constraint on the partition of array Y :
kerDY � spanf(1;�1)g. This partition means that elements along
the diagonal are allocated to the same processor. In general, when
the array index functions are not invertible, we must introduce aux-
iliary variables and use a pseudo-inverse function. The techniques
we use are similar to those presented in other literature [3, 29].

This analysis is run on all pairs of arrays involved in a cycle
in the interference graph (including the degenerate case of multi-
ple access functions for one array in a loop nest). If an array is
involved in multiple cycles and multiple constraints are found, then
the constraints are summed. In general, when computing the data
constraints on an array used in multiple loop nests, it is possible
that the loop nests access different subsections of the array. If this
is the case, each loop nest only contributes to the constraints for the
section of the array that it references.

(3) Data-Computation Relation. This constraint ensures that the
relationship between data and computation from Eqn. 3 holds. If two
iterations~{1 and~{2 in loop nest j are mapped to the same processor,
then the data of array x they access must also be mapped to the same
processor. For ~t = ~{1 �~{2, then from section 3, ~t 2 kerCj . Using
Eqn. 3: DxFxj~t = Cj~t = ~0 and thus Fxj~t 2 kerDx. Formally,

kerDx � spanf~s j ~s = Fxj~t;~t 2 kerCjg (5)

Similarly, two iterations~{1 and~{2 in loop nest j must be mapped to
the same processor if the data of array x they access are mapped
to the same processor. Again, let ~t = ~{1 �~{2. If ~t 2 ker(DxFxj)
then ~t 2 kerCj . Since ker(DxFxj) � kerFxj , if ~t 2 kerFxj then
the two iterations reference the same array location and must be
mapped to the same processor. Let Sxj = range(Fxj). In general,

kerCj � spanf~t j (~t 2 kerFxj)_(Fxj~t 2 (kerDx\Sxj))g (6)

The sequential loops in each loop nest cause elements of the
array referenced in that loop nest to be allocated local to the same
processor. The local array elements cause iterations of the loop
nests that access those elements to be executed sequentially.

5



4.3 Calculating Partitions
To find partitions that maximize parallelism and have neither
pipelined nor data reorganization communication, we find the mini-
mum partitions that satisfy constraints (1) – (3). Constraint 1 (single
loop) is used to initialize the computation partitions and constraint
2 (multiple arrays) is used to initialize the data partitions. An it-
erative algorithm is used to satisfy constraint 3 (data-computation
relationship). An overview of this algorithm is shown in Figure 2.

algorithm Update Arrays
(j : Loop Nest;
IG : Interference Graph; /* IG = (Vc; Vd; E) */
DP Set : set of vector space)

foreach x 2 referenced in(j) do
kerDx := kerDx + spanf~s j ~s = Fxj~t;~t 2 kerCjg;

end foreach;
end algorithm;

algorithm Update Loops
(x : Array;
IG : Interference Graph; /* IG = (Vc; Vd; E) */
CP Set : set of vector space)

foreach j 2 loops using(x) do
kerCj := kerCj+

spanf~t j (~t 2 kerFxj) _ (Fxj~t 2 (kerDx \ Sxj))g;
end foreach;

end algorithm;

algorithm Calc Relation
(IG : Interference Graph; /* IG = (Vc; Vd; E) */
CP Set : set of vector space;
DP Set : set of vector space)

while changes do
if changed(x 2 Vd) then Update Loops(x,IG,CP Set);
if changed(j 2 Vc) then Update Arrays(j,IG,DP Set);

end while;
end algorithm;

algorithm Partition
(IG : Interference Graph; /* IG = (Vc; Vd; E) */

/* Computation and data partitions */
CP Set : set of vector space;
DP Set : set of vector space)

/* Satisfy constraints */
foreach j 2 Vc do kerCj := single loop constraint(j);
multiple loop constraint(IG, DP Set);
Calc Relation(IG,CP Set,DP Set);

end algorithm;

Figure 2: Algorithm for calculating partitions.

The iterative algorithm calculates the effects of the loop nests
on the arrays using Eqn. 5 and of the arrays on the loop nests using
Eqn. 6. This continues until a stable partition is found. Informally,
the partition algorithm trades off extra degrees of parallelism to
eliminate communication. Going back to the simple example in

Figure 1, the array index functions for arrays X and Z are FX1 =FZ2 = h 1 0
0 1

i
. The index functions for array Y in the first and

second loop nests are FY 1 = h
1 0
0 �1

i
and FY 2 = h 0 1

1 0

i
,

respectively. kerC1 is initialized to ; and kerC2 is initialized to
spanf(0; 1)g. The data partitions kerDX;Y;Z are initialized to ;.
The routine Update Arrays is called with loop nest 2. Eqn. 5 is
applied to arrays Y andZ , resulting in kerDY = spanf(1;0)g and
kerDZ = spanf(0; 1)g. Next, routine Update Loops is called with
arrays Y and Z . Because of array Y , Eqn. 6 is applied to loop nest
1, resulting in kerC1 = spanf(1; 0)g. Finally, Update Arrays is
called again with loop nest 1 and kerDX = spanf(1;0)g.

Lemma 4.2 The partition algorithm finds the maximum parallelism
(minimum partitions) that satisfy constraints 1–3, and is guaranteed
to terminate.

Proof: The partition algorithm satisfies constraints 1 and 2 because
the data and computation partitions are initialized with these con-
straints. The algorithm finds the minimum partition that satisfies the
data-computation relation constraint 3 because the algorithm only
ever increases the partitions in order to ensure that the constraint
is satisfied. To prove termination, we use the fact that the spaces
kerD (data partitions) and kerC (computation partitions) increase
in size monotonically as the algorithm progresses. In the worst
case, the partitions will span the entire space and the algorithm will
terminate. 2

After a data partition has been found for each array and a com-
putation partition for each loop nest, the next step is to determine
the number of virtual processor dimensions. The number of virtual
processor dimensions n isn = maxx2Arrays

(dim(Sx)� dim(kerDx))
Here Sx = X8j2loops using(x) range(Fxj) is the total array space ac-

cessed, typically the entire array. This equation will yield a value
of n such that all the parallelism found in the partition algorithm is
exploited. In the example from Figure 1, n = 1.

4.4 Calculating Orientations
Once the partition and number of virtual processor dimensions have
been found, the algorithm finds the orientations. The partitions de-
termine the kernels of each of the decomposition matrices. Since
the orientations in a connected component of the interference graph
are all relative to one another, we can choose one arbitrary decom-
position matrix and derive the rest of the decomposition matrices
in the component. The algorithm starts by choosing an n � m
data decomposition matrix Dx for an array x of dimension m such
that the nullspace of Dx is the data partition kerDx. According
to Eqn. 3, the computation decomposition matrix for a loop nest j
that references the array is Cj = DxFxj . Again, for simplicity of
presentation we assume that the array index functions are invertible.
The data decomposition matrix, Dy , for another array y accessed in
the same loop nest is calculated usingDy = CjF�1yj = DxFxjF�1yj .
The remaining decompositions in the connected component are cal-
culated in a similar fashion. When an array index function only
accesses a subsection of the array (i.e. Syj � Ay), auxiliary vari-
ables are used temporarily in the unspecified dimensions of the data
decomposition matrix. Note that when calculating the orientations,
non-integer entries in the decomposition matrices can result. Be-
cause orientations are relative, the matrices can be multiplied by the
least common multiple to eliminate the fractions.
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Lemma 4.3 The orientation algorithm finds decomposition ma-
trices for all arrays x and all loop nests j that have exactly
the nullspace found by the partition algorithm, and such thatDxFxj = Cj .

Proof: We only outline the proof here because of space considera-
tions. We prove this lemma by induction. The base case is the arrayx for which we chose an arbitrary decomposition matrix that has the
specified kernel. Using partition constraints 2 and 3, we then show
that as each decomposition matrix is calculated, it has the correct
nullspace and DxFxj = Cj holds. 2
Theorem 4.4 The partition and orientation algorithms together
find decomposition matrices for all arrays and all loop nests that
maximize parallelism when there is no communication within loops
and no reorganization communication across loops.

Proof: This theorem follows directly from Lemmas 4.2 and 4.3.2
4.5 Calculating Displacements
As we expect communication at the displacement level to be rel-
atively inexpensive nearest-neighbor communication, we do not
consider sacrificing parallelism to avoid communication due to dis-
placements. However, the algorithm minimizes any communication
caused by conflicting displacements whenever possible. The dis-
placements are calculated after the partitions and orientations have
already been determined. Our compiler uses a simple greedy strat-
egy that takes into account branch predictions and the offset sizes
to find displacements that minimize communication along the most
frequently executed paths. Eqn. 2 says that given the full data de-
composition,Dx + ~�x , for array x referenced in a loop nest j (with
the array index function Fxj(~{) + ~kxj ) the computation displace-
ment ~
j = Dx~kxj + ~�x . The data displacement, ~�y , for another
array y accessed in the same loop nest can be calculated using~�y = ~
j �Dy~kyj .

5 Blocked Decompositions
In this section we discuss the problem of finding data and compu-
tation decompositions that have pipelined communication, but no
data reorganization communication.

The previous section only considered the parallelism available
in forall loops. However, it may be the case that it is not possible
to legally transform the iteration space so that there are outermost
forall loops. For example, consider the four point difference oper-
ation:

for i1 := 1 to N � 1 do
for i2 := 1 to N � 1 do

X[i1,i2] := f (X[i1,i2], X[i1 � 1,i2] + X[i1 + 1,i2] +
X[i1,i2 � 1] + X[i1,i2 + 1]);

Here the parallelism is only available along a wavefront, or di-
agonal, of the original loop nest. Tiling[37, 39] (also known as
blocking, unroll-and-jam and stripmine-and-interchange) is a well-
known transformation that allows both parallelism and locality to
be exploited within a loop nest.

The original iteration space is shown in Figure 3(a) and Fig-
ure 3(b) demonstrates how this loop can be executed in parallel
using doacross parallelism. The iterations in each shaded block
are assigned to different processors. The computation proceeds

(b)

(c) (d)

(a)

i2

i1 i1

i2

i2

i1

i2

i1

Figure 3: (a) Original iteration space. (b)–(d) Iteration spaces
showing the parallel execution of tiled loops. The arrows represent
data dependences.

along the wavefront dynamically, by using explicit synchronization
to enforce the dependences between the blocks.

When all dimensions of the iteration space are blocked, there
will be idle processors as only blocks along the diagonal can exe-
cute in parallel. We can gain the advantages of tiling without idle
processors by assigning entire rows (Figure 3(c)) or columns (Fig-
ure 3(d)) to different processors. In these two cases, each processor
is assigned a strip of the iteration space, and all processors can start
executing in parallel. For example, the tiled code that corresponds
to Figure 3(d) is as follows:

for ii02 := 1 to N � 1 by B do
for i1 := 1 to N � 1 do

for i02 := ii02 to min(N � 1,ii02 +B � 1) do
X[i1,i02] := f (X[i1,i02], X[i1 � 1,i02] + X[i1 + 1,i02] +

X[i1,i02 � 1] + X[i1,i02 + 1]);

When this loop nest is tiled, the original i2 loop is split into two
dimensions: the outer ii02 loop and the inner i02 loop. Allocating
each shaded strip from Figure 3(d) to a different processor spreads
iterations of the ii02 loop across processors, while iterations of the i02
loop reside on the same processor.

Tiling can also be used to reduce communication across loop
nests, even when forall parallelism is available in both nests. Con-
sider the following example of an ADI (Alternating Direction Im-
plicit) integration:(1) forall i1 := 0 to N do

for i2 := 1 to N do
X[i1,i2] := f1(X[i1,i2], X[i1,i2 � 1]);(2) for i1 := 1 to N do

forall i2 := 0 to N do
X[i1,i2] := f2(X[i1,i2], X[i1 � 1,i2]);

In the first loop nest, the sequential loop accesses columns of X .
In the second loop nest, the sequential loop accesses rows of X .
For there to be no communication, then the data partition for X
must be kerDX = spanf(0;1); (1; 0)g, and the computation par-
tition for both loops must be kerC1;2 = spanf(0; 1); (1; 0)g. This
partition specifies that the entire array X is allocated on the same
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processor, and that both loops run sequentially. Only considering
the parallelism available in the forall loops provides only two op-
tions: either run the loops sequentially, or incur data reorganization
communication between the two loops.

However, if the compiler tiles both loops to extract wavefront
parallelism, then the reorganization communication is reduced to
inexpensive pipelined communication. A tiled version of the ADI
code is shown below.(1) for ii02 := 1 to N by B do

for i1 := 0 to N do
for i02 := ii02 to min(N ,ii02 +B � 1) do

X[i1,i02] := f1(X[i1 ,i02], X[i1,i02 � 1]);(2) for ii02 := 0 to N by B do
for i1 := 1 to N do

for i02 := ii02 to min(N ,ii02 +B � 1) do
X[i1,i02] := f2(X[i1 ,i02], X[i1 � 1,i02]);

In both loop nests, the outer ii02 is distributed across processors,
and the inner i1 and i02 loops are executed on the same processor.
Therefore, each processor is assigned a block of columns of the
array. In the first loop nest, there are dependences across the blocks
and there is pipelined communication within the loop nest. In the
second loop nest, the data dependences are within the block so no
communication is necessary.

5.1 Blocked Decomposition Model

Our decomposition model is easily extended to incorporate the con-
cept of tiling. In general, tiling creates two sets of loops: the inner
loops iterate within the block and the outer loops iterate across the
blocks. The inner loops are allocated to the same processor, while
the outer loops are distributed across the processors. In this way, we
achieve locality within the block, and parallelism across the blocks.

Mathematically we have represented the computation that is
allocated to the same processor as a vector space kerC . Focusing
now on the loops within an inner block, the iterations that are
allocated to same processor also form a vector space, Lc. The
vector space Lc is called the localized vector space in [37], whereLc is used to represent tile iterations that have cache locality. In our
model the localized vector space Lc contains all dimensions of the
iteration space that are local to a processor, be they completely local
or blocked. Thus kerC � Lc. Any dimension of the iteration space
that is in Lc � kerC is blocked. Only the iterations within a finite
block are allocated to the same processor, not the entire dimension.
The blocks themselves are then distributed across the processors.

Similarly, we define a vector space Ld to characterize the array
dimensions within a block that are allocated to the same processor.
The relationship between the data partition kerD and space Ld is
kerD � Ld.

In the ADI example, the blocked computation partitions
are kerC1;2 = ; and Lc1;2 = spanf(0; 1); (1; 0)g. Simi-
larly, the blocked data partition is kerDX = ; and LdX =
spanf(0; 1); (1; 0)g.

Our algorithm finds the computation and data partitions kerC
and kerD; these spaces correspond to those dimensions that must
be entirely mapped onto the same processor. If blocking is desired,
the algorithm also finds Lc and Ld; the iterations in Lc � kerC ,
and the data in Ld � kerD are distributed, but must be blocked.

5.2 Calculating Blocked Decompositions
We now present an algorithm to find data and computation partitions
that may have pipelined communication. Our algorithm first tries to
apply the partition algorithm as specified in section 4.3, considering
only the parallelism available in the outermost forall loops. This
will try to find a solution such that every parallelizable loop has
parallelism, and there is neither reorganization nor pipelined com-
munication. If such a solution cannot be found, the compiler then
tries to exploit doacross parallelism.

Recall that the local phase of our compiler transforms each loop
nest such that the largest possible fully permutable loop nests are
outermost. Also within each fully permutable nest, any forall loops
are positioned outermost. A loop nest that is fully permutable can
also be fully tiled[18, 38]. If the dependence vectors in the fully
permutable loop nest are all distance vectors, then the pipelined
communication is inexpensive because only the data elements at
the block boundaries need to move. Otherwise, the cost of the
communication within the loop must be weighed against the cost of
reorganization communication between the loops.

algorithm Partition with Blocks
(IG : Interference Graph; /* IG = (Vc; Vd; E) */

/* Computation and data partitions */
CP Set : set of vector space;
DP Set : set of vector space;

/* Computation and data localized spaces */
CL Set : set of vector space;
DL Set : set of vector space)

/* Try to find solution with no communication */
Partition(IG,CP Set,DP Set);

if no parallelism then
/* Record localized spaces */

foreach kerCj 2 CP Set do Lcj := kerCj;
foreach kerDx 2DP Set do Ldx := kerDx;

/* Find blocked iterations and data */
foreach j 2 Vc do kerCj := single blocked loop constraint(j);
multiple loop constraint(IG, DP Set);
Calc Relation(IG,CP Set,DP Set);

end if;
end algorithm;

Figure 4: Algorithm for calculating partitions with blocks.

An overview of the algorithm is shown in Figure 4. Once
the algorithm determines that a solution with neither reorganiza-
tion nor pipelined communication (and with at least one degree of
parallelism) cannot be found, it recalculates kerC and kerD. The
partition algorithm in Figure 2 is reapplied – the only change is in
the single loop constraint used to initialize the computation parti-
tions. Any dimensions that can be tiled are not considered in the
initial computation partitions. Thus the initial computation partition
for a loop nest of depth l is again the span of a set of l-dimensional
elementary basis vectors. If a loop at nesting level k is sequential
and cannot be tiled, then ek is included in the initial computation
partition. The multiple array constraints are used as before to ini-
tialize the data partition kerD. The iterative partition algorithm is
then run to find the data and computation partitions. The final kerC
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and kerD represent the computation and data that must be allocated
to the same processor.

We now need to find Lc and Ld to determine the iterations
and array elements that are either completely local to a processor or
blocked. Note that these vector spaces have already been calculated.
When the partition algorithm was called to find a solution with no
pipelined communication, the resulting kerC is exactly the vector
spaceLc for each loop nest. Similarly, the resulting kerD is exactly
the vector space Ld for each array. Once the partitions have been
found, then an orientation and displacement are calculated as dis-
cussed in sections 4.4 and 4.5. When the iteration and data spaces
are the blocked, the orientations and displacements are found for
entire blocks.

In the ADI example above, both loop nests are fully permutable
and can be completely tiled. When the compiler discovers that
the forall parallelism cannot be exploited without communication,
it tries to exploit the doacross parallelism in these loops. The
initial computation partitions are kerC1;2 = ;, and the initial data
partition is kerDX = ;. Running the iterative partition algorithm
does not change the partitions. Since Lc1;2 = spanf(0; 1); (1; 0)g
and LdX = spanf(0; 1); (1; 0)g, the spaces are completely tiled.

Note that the algorithm yields a solution that allows the entire
iteration and data space to be tiled, and does not over-constrain the
partitions unnecessarily. This solution can have idle processors, as
was shown in Figure 3(b) above. The optimizations our compiler
uses to reduce idle processors are described in Section 7.1.

When we exploit doacross parallelism, it is possible that dif-
ferent processors will write to the same array location within a loop
nest. Thus, there is no single static data decomposition for the array
at that loop nest. In these cases, however, the amount of data that
must be communicated is small with respect to the amount of com-
putation. A code generator for a shared address space machine does
not need to know exactly which processor has the current value of
the data. Our code generator for distributed address space machines
uses data-flow analysis on individual array accesses to find efficient
communication when the data moves within a loop nest[2].

6 Dynamic Decompositions
In this section we solve the problem of finding data and compu-
tation decompositions that maximize parallelism when both data
reorganization and pipeline communication are allowed. Data reor-
ganizations occur when the decomposition for an array in one loop
nest differs from the decomposition of the same array in another
loop nest. We find a data decomposition for each array at each loop
nest, and a computation decomposition for each loop nest.

6.1 The Communication Graph
To model decompositions that change dynamically, we use a com-
munication graph G = (V; E). The nodes in the graph correspond
to the loop nests in the program. The edges in the graph represent
places in the program where data reorganization communication can
occur.

The edges in the graph are calculated using information that is
similar to the reachingdecompositions[14, 33] used in the Fortran D
compiler. In Fortran D, the reaching decompositions are defined to
be the set of decomposition statements that may reach an array
reference that uses the decomposition. In our case, all loop nests
may define a decomposition. Thus, the decomposition for an array in
one loop nest reaches another loop nest if it is possible for the values
of the array in the two loop nests to be the same. This problem can
be calculated in a manner similar to the standard reaching definitions

data flow problem. The edges in the communication graph are the
chains formed by the reaching decompositions, and are not directed.
For simplicity of presentation, this discussion assumes each array is
both read and written in the loop nests that access the array.

Associated with each edge e 2 E is the probability that the
decomposition in one loop nest will reach the other loop nest. Each
loop node has a weight that is a function of the number of instructions
in the loop and an estimate of the number of times the loop executes.
Our implementation currently uses profile information to calculate
the probabilities for the edge weights as well as the loop execution
counts for the loop node weights.

6.2 Problem Formulation

We can now formally state the dynamic decomposition problem.
For a given communication graph G = (V; E) we want to find
the data decomposition of each array at each loop node, and the
corresponding computation decomposition of the loops.

The computation decomposition determines the degree of par-
allelism in a loop nest. For each loop node, we use the computation
decomposition and the loop node weight to estimate the benefit to
the execution time as a result of the parallelism in the loop nest.
Note that if there is tiling, the parallelism benefit of the loop takes
into account the cost of pipeline communication within the loop.
Data reorganization can occur if the decomposition for an array in
one loop differs from the decomposition of the same array in another
loop. Thus the data decompositions, together with the probabilities
on the edges, are used to estimate the communication time. The
value of the graph is the sum of the parallelism benefits of all the
loop nodes minus the total communication cost. The goal is to label
the arrays and loops with decompositions such that the overall value
of the graph is maximized. For example, consider the following
program fragment.(1) forall i1 := 0 to N do

forall i2 := 0 to N do
X[i1,i2] := f1(X[i1,i2], Y[i1,i2]);
Y[i1,i2] := f2(X[i1,i2], Y[i1,i2]);

if (expr) then(2) forall i1 := 0 to N do
for i2 := 0 to N do

X[i1,i2] := f3(X[i1,g1(i2)]);

else(3) forall i1 := 0 to N do
for i2 := 0 to N do

Y[i2,i1] := f4(Y[g2(i2),i1]);
end if;(4) forall i1 := 0 to N do

forall i2 := 0 to N do
X[i1,i2] := f5(X[i1,i2], Y[i1,i2]);
Y[i1,i2] := f6(X[i1,i2], Y[i1,i2]);

Figure 5(a) shows the communication graph, assuming the ex-
pression is true 75% of the time, and that both arrays are of size
10� 10. The edges are labeled with the estimated communication
time assuming that none of the decompositions match, and all the
data must be reorganized between each loop nest. The value on
the edge between nodes 1 and 4 is the sum of the communication
estimates for arrays X and Y . From loop nest 1, the decomposition
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Figure 5: (a) A communication graph. (b) The components resulting
from the dynamic decomposition. (c) The final decompositions.

of X has a 25% probability of reaching loop nest 4, and the decom-
position of Y has a 75% probablility. Figures 5(b) and (c) illustrate
the final decompositions for this example, and are discussed in the
next section.

Theorem 6.1 The dynamic decomposition problem is NP-hard.

Proof: We prove the dynamic decomposition problem NP-hard
by transforming the known NP-hard problem, Colored Multiway
Cut[9], into a subproblem of this problem. The Colored Multiway
Cut problem is given a graph G = (V; E) with weighted edges,
and a partial k-coloring of the vertices, i.e., a subset V 0 � V
and a function f : V 0 ! 1;2; : : : ; k. Can f be extended to a
total function such that the total weight of edges that have different
colored endpoints is minimized? Consider the subproblem of the
dynamic decomposition problem in which the program accesses
only a single array X . If parallelized, each loop node has a value
that is greater than the sum of the weights of all the edges; otherwise
it has a value of 0.

We can reduce an instance of Colored Multiway Cut into an
instance of our subproblem in polynomial time. We only give a brief
overview of the reduction here. Each node in the original problem
becomes a loop nest of depth k in our subproblem’s input program,
and the edge weights in G become branch probabilities. The arrayX is k-dimensional, where each dimension represents a color in G.
We write the input program such that for each node v 2 V 0 of colori, only the ith loop is parallel in the loop nest representing v. For
each node v 2 V � V 0 all loops in the corresponding loop nest are
parallel. 2

After finding the dynamic decompositions, the edges that have
communication correspond to the cutset of edges in the Colored
Multiway Cut problem. If the edges are removed, then an array will
have the same decomposition across all loop nests in a connected
component of the communication graph.

6.3 Dynamic Decomposition Algorithm
Given that the dynamic decomposition problem is NP-hard, our
compiler algorithm uses heuristics to find dynamic decompositions.
Our dynamic algorithm uses a greedy approach that eliminates the
largest amounts of communication first. The algorithm joins the

loop nodes that have the greatest edge costs into the same compo-
nent, thus eliminating the possibility of data reorganization between
those two loop nodes. We only consider loop nests that have some
degree of parallelism when joining components. Purely sequen-
tial loops are treated as being in a component by themselves. An
overview of the algorithm is shown in Figure 6. The routine Sin-
gle Level describes the algorithm for the base case of a single nesting
level. The rest of the algorithm deals with the multiple level case
and is described in the next section.

At each nesting level, the algorithm operates on a communica-
tion graph. The algorithm initializes the components such that each
node in the communication graph G = (V;E) is its own compo-
nent, and then calculates the edge weights. The edge weights are
a worst-case approximation of the actual communication cost. The
worst case occurs when none of the decompositions match and all
the data must be reorganized between each loop nest.

The edges in E are examined in decreasing order of their
weights. For each edge (u; v) 2 E, the algorithm tries to join
the current component of u and the current component of v into a
single component. An interference graph is created from the loop
nodes (and arrays referenced in the loops) in the new, joined com-
ponent. The partition algorithm from section 5 is called with the
interference graph to find the new partitions.

In forming the new component, the algorithm eliminates the
data reorganization cost of the edge. However, the union operation
may cause some (or all) of the loop nodes to execute sequentially,
or it may generate pipeline communication within loop nodes (as a
result of tiling). The algorithm finds the value of the graph before
and after the new partitions have been calculated. If the value of
the graph is greater after the join, then the new component is saved.
The algorithm then records the new partitions of all loops and arrays
within the new component. Otherwise, there is communication
along the edge (u; v), and the new component is discarded.

Consider the communication graph of Figure 5(a). For this
example, we assume that the loop node weights are very large. As
none of dependences in the code are distance vectors,we assume that
tiling is not practical. The edge between nodes 1 and 4 is examined
first. The partition algorithm determines that there is at least one
degree of parallelism without data reorganization communication
between the two loops, so the nodes are joined. Next the algorithm
examines either the edge between nodes 1 and 2 or the edge between
2 and 4. In this case the partition algorithm can still find parallelism
among the nodes 1, 2 and 4. Next, the algorithm tries to add node 3
into the component. This time the partition algorithm finds that the
only way to eliminate reorganization communication is to run all
four loops sequentially and the algorithm decides not to add node 3.
Thus, nodes 1, 2 and 4 form one componentand node 3 is in another
component. Figure 5(b) illustrates the resulting components and
Figure 5(c) shows the final decompositions within each component.

6.4 Putting It All Together

So far we have only considered the base case of at most one outer
sequential loop containing a number of perfectly nested loops. The
Dynamic Decomposition routine shown at the bottom of Figure 6
gives an overview of the decomposition algorithm in the general
case.

Each nesting level is examined in a bottom-up order. This has
the effect of pushing communication into the outermost loops as
much as possible. The components are re-initialized at each level
so that each loop nest is considered in the context of its sequential
outer nest at the current level. The partitions found at each level are
used to initialize the partitions for the next level. All references to
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algorithm Single Level
(CG : Communication Graph; /* CG = (V; E) */
/* Computation and data partitions */
CP Set : set of vector space;
DP Set : set of vector space;

/* Computation and data localized spaces */
CL Set : set of vector space;
DL Set : set of vector space)

joined comp, comp1, comp2 : Component;
IG : Interference Graph;
val : integer;

initialize components;
foreach (u; v) 2 E do calculate w(u; v);
val := value(CG);
foreach (u; v) 2 E in decreasing order of weight do

comp1 := find component(u);
comp2 := find component(v);
joined comp := union components(comp1,comp2);
IG := create interference graph(joined comp);
Partition with Blocks(IG,CP Set,DP Set,CL Set,DL Set);
if value(CG) > val then

val := value(CG);
install joined comp;

else
discard joined comp;
record data reorganization between u and v;

end if;
end foreach;

end algorithm;

algorithm Dynamic Decomposition
CG : Communication Graph;

/* Computation and data partitions */
CP Set : set of vector space;
DP Set : set of vector space;

/* Computation and data localized spaces */
CL Set : set of vector space;
DL Set : set of vector space;

foreach nesting level i in bottom-up order do
CG :=

create comm graph(i,CP Set,DP Set,CL Set,DL Set);
Single Level(CG, CP Set,DP Set,CL Set,DL Set);

end foreach;

calculate orientations;
calculate displacements;

end algorithm;

Figure 6: Algorithm for calculating dynamic decompositions.

loop indices that are outside the current nesting level are treated as
symbolic constants when finding the partition constraints. In this
manner, only the constraints for the current level are considered.

In the bipartite interference graph, there is an edge between
each array node and each loop node that accesses the array. Each
array node in the bipartite interference graph only has a single
decomposition. Thus, if the dynamic algorithm discovers that an
array’s decomposition changes, the node corresponding to that array
in the interference graph is split at all subsequent levels. The edges
are adjusted so that loops using the reorganized decomposition now
point to the proper array node.

Once the components have been formed, the algorithm finds the
orientations and displacements. The orientations of the arrays and
loops within a component are relative to one another; for example,
no additional communication would result from transposing all the
decompositions within a component. We use this observation to
reduce the amount of communication when finding the orientations
across components. Our compiler chooses an orientation for each
component that matches as closely as possible to the other com-
ponents that are connected by edges. Again, the compiler uses a
greedy strategy based on the edge weights to decide which compo-
nents to orient first. The orientations and displacements within a
component are found using the algorithms described in Section 4.4
and Section 4.5, respectively.

The dynamic decomposition algorithm shown in Figure 6 is the
driver algorithm for finding decompositions in the general case. It
finds data and computation decompositions that maximize paral-
lelism and minimize data reorganization and pipelined communi-
cation. The partitioning algorithms from the previous two sections
are used as subroutines to the dynamic algorithm. In particular, if a
static decomposition exists, then the dynamic algorithm will be able
to successfully join all the loop nodes into a single component. In
general, the algorithm reports a data decomposition for each array
at each loop nest, and a computation decomposition for each loop
nest.

7 Optimizations
There are several ways to improve upon the program decompositions
found in the previous section. This section briefly summarizes how
to minimize the number of idle processors and how to find and
minimize replication of read-only data.

7.1 Idle Processors
When a loop nest accessesonly a subsection of an array, the number
of virtual processor dimensions may be larger than the nesting depth
of a loop nest. As a result, only a fraction of the processors will be
busy during the execution of the loop nest. To avoid idle proces-
sors, we use the computation decomposition to find those processor
dimensions that have parallelism for all loops. The equation for the
number of virtual processor dimensions n is modified so that n is
limited to the minimum distributed iteration space:n0 = min( maxx2Arrays

(dim(Sx)� dim(kerDx));
minj2Loops

(l � dim(kerCj)))
Here Sx = X8j2loops using(x) range(Fxj) is the array space accessed.

We then reduce the number of virtual processor dimensions by
projecting the n-dimensional virtual processor space onto an n0-
dimensional processor space. In choosing the dimensions in the
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virtual processor space to project onto, n0 vectors are selected(~t1;~t2; : : : ;~tn0) such that 8i; ~ti 62 kerCT for all computation de-
composition matrices C . This means that there are no projections
onto a processor dimension that is idle during the execution of any
loop nest.

7.2 Replication

Replication of read-only data is a common technique used to im-
prove the performance of parallel machines. Our algorithms find the
amount of read-only data replication needed to maintain the degree
of parallelism inherent in the read-write data without introducing
additional communication.

We consider two types of replication: constant replication and
dimension replication. Constant replication occurs when there are
multiple data decompositions for an array. Dimension replication
means that all processors along a given dimension have a copy of the
same data. The increase in the space requirements to accommodate
constant replication is a linear function of the array size, whereas
dimension replication can cause the space needed to grow by the
number of processors. Thus we focus on dimension replication.

To allow the necessary replication, we first run the decompo-
sition algorithm without taking into account the read data in the
program. From the resulting computation partition, we can then
find the data partitions of the read-only arrays using Eqn. 5. We
must now find the processor dimensions which contain replicated
data.

Dimension replication is modeled using a reduced processor
space, which is then expanded into the full n-dimensional pro-
cessor space. All processors in the expanded dimensions have
copies of the data that are on the corresponding processor in
the reduced space. Let x be a replicated m-dimensional array,
with data partition kerDx. The dimensionality of the reduced
processor space, nr , is nr = dim(Sx) � dim(kerDx), whereSx = X8j2loops using(x) range(Fxj) is the array space accessed. The

degree of replication for an array (the number of processor dimen-
sions along which the data is copied) is n � nr . The data decom-
position matrix for array x is an nr �m decomposition matrix Dx,
which maps array elements onto the reduced processor space.

LetCj be the computation decomposition matrix for a loop nestj that accesses array x. Cj maps iterations onto the full processor
space. To relate the full processor space to the reduced processor
space, we use an nr � n matrix Rxj . Eqn 3 from section 4.1 is
modified to express the relationship between computation and data
with replication: DxFxj(~{) = RxjCj(~{) (7)

The matrix Rxj mapsCj onto the reduced space, and the nullspace
of Rxj , kerRxj , corresponds to dimensions along which there is
replication.

The algorithm uses the data partition kerDx to find kerRxj .
In section 4.4, we used Eqn. 3 to find the data and computation
decomposition matrices. Similarly, we use Eqn. 7 to find the de-
composition matrices with replication.

The computation and data decompositions are initially derived
without any consideration for the amount of replication needed.
As a result, the amount of replication called for could be much
greater than is practical on the target machine. Thus, we also use
the techniques in section 7.1 to limit the degree of replication by
projecting the virtual processor space onto a smaller processor space.

8 Experimental Results
We have implemented the algorithms described in this paper in
the SUIF compiler at Stanford. The experiments described in this
section were performed on the Stanford DASH shared-memory
multiprocessor[26]. Since we do not have a code generator for
DASH at this point, we implemented by hand parallel SPMD pro-
grams with the decompositions generated by our compiler. All
programs were compiled with the SGI f77 compiler at the -O2 op-
timization level.

The DASH multiprocessor is made up of a number of physi-
cally distributed clusters. Each cluster is based on Silicon Graphics
POWER Station 4D/340, consisting of 4 MIPS R3000/R3010 pro-
cessors. A directory-based protocol is used to maintain cache
coherence across clusters. It takes a processor 1 cycle to retrieve
data from its cache, 29 cycles from its local memory and 100-130
cycles from a remote memory. The DASH operating system allo-
cates memory to clusters at the page level; if a page is not assigned
to a specific cluster then it is allocated to the first cluster that touches
the page.

We compare the decomposition our algorithm finds with the
decomposition the SGI Power Fortran Accelerator (version 4.0.5)
parallelizing compiler used. We also compare our results with other
possible decompositions. We ran our programs on an 8-cluster
DASH multiprocessor, with 28MB of main memory per cluster.

We looked at the heat conduction phase of the application
SIMPLE, a two-dimensional Lagrangian hydrodynamics code from
Lawrence Livermore National Lab. The heat conduction routine
conduct is 165 lines long and has about 20 loop nests. Within this
routine is a set of loops that performs an ADI integration where the
parallelism is first across the rows of the arrays and then across the
columns of the arrays. In all cases, we used a blocked distribution
scheme.

Figure 7 shows the speedups (over the best sequential version)
of four different decompositions of this routine, for a problem size
of 1K � 1K using double precision.
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Figure 7: Speedup over sequential execution time for conduct. The
problem size is 1K � 1K, double precision.

The total amount of data used by this routine is on the order of
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128MB. When the amount of memory needed by a cluster exceeds
the memory available on that cluster, the DASH operating system
allocates the memory on the next available cluster. Thus when
executing on four or fewer clusters, the data used in the application
may actually be allocated to another cluster.

The first curve labeled no optimization shows the results of
the SGI Power Fortran compiler. We allowed the DASH operating
system to allocate the pages to the first cluster that accessed the
data. Since Fortran arrays are allocated column major, this resulted
in blocks of columns being allocated to the clusters. When the
only available parallelism is by row, the processors perform remote
reads and writes. The second curve labeled static shows the perfor-
mance if a single data decomposition is used for each array. In this
case blocks of rows were made contiguous in the shared address
space. This represents the best possible static decomposition if only
forall parallelism is exploited. The third curve labeled dynamic,
no pipelining reallocates the data when the dimension of the paral-
lelism changes. However, in this case the program incurs the cost
of reorganization communication when the data is reallocated. This
curve represents the best possible overall decomposition with only
forall parallelism. The fourth curve labeled dynamic and pipelin-
ing shows the results of allocating blocks of rows contiguously and
using explicit synchronization between processors when the paral-
lelism is by column. In this version the processors only synchronize
between blocks of columns (we used a block size of 4). This is the
decomposition our compiler finds when considering both pipeline
and reorganization communication.

9 Related Work
A number of researchers have addressed problems that are related
to the decomposition problem. Sarkar and Gao have developed an
algorithm that uses collective loop transformations to perform array
contraction[32]. They use loop interchange and reversal transforma-
tions to orient the computation. Ju and Dietz use a search-based al-
gorithm to find data layout and loop restructuring combinations that
reduce cache coherence overhead on shared memory machines[19].
Hwang and Hu describe a method for finding the computation map-
ping of two systolic array stages that share a single array[16]. Their
algorithm works by first calculating the projection vector, which is
similar to what we call the partition, of the computation mapping.

Many projects have examined the problem of finding array
alignments (what we call data orientations and displacements) for
data parallel programs[8, 11, 21, 30, 35]. These approaches focus
on element-wise array operations, and try to eliminate the commu-
nication between consecutive loops.

Li and Chen prove the problem of finding optimal orientations
NP-complete[28], and have developed a heuristic solution which is
used to implement their functional language Crystal on message-
passing machines[27]. In contrast to these approaches, our model
supports loop nestscontaining both parallel and sequential loops and
general affine array index functions. These approaches all optimize
for a fixed degree of parallelism, whereas we make explicit decisions
about which loops are run in parallel.

Several researchers have developed data decomposition algo-
rithms based on searching through a fixed set of possible decompo-
sitions. Gupta and Banerjee have developed an algorithm for auto-
matically finding a static data decomposition[12]. Their approach is
based on an exhaustive search through various possible decomposi-
tions using a system of cost estimates. Carle et. al. have developed
an interactive tool, as part of the Fortran D project, that finds data
decompositions within and across phases of a procedure[6]. Data
can be remapped dynamically between phases. Their approach

uses a static performance estimator[4] to select the best decompo-
sitions among a fixed set of choices. In comparison, our algorithm
avoids expensive searches by systematically calculating the decom-
positions. As a result of our mathematical model, we are able to
derive decompositions that take into account pipeline communica-
tion within loop nests and data reorganization communication across
loop nests.

10 Summary and Conclusions
The decomposition problem is very complex, as there are many
inter-related issues that must be addressed. This paper addresses
the full problem of automatically calculating data and computation
decompositions for programs in a systematic way.

Our algorithms are based on the mathematical model of decom-
positions as affine functions. This framework is general enough to
handle a broad class of array accesspatterns. Using the affine model
we structure decompositions into three components: partition, ori-
entation and displacement. Since equivalent decompositions have
the same partition, we solve for the partition first and can therefore
evaluate many possible decomposition designs simultaneously.

To maximize parallelism, our algorithm exploits forall paral-
lelism, as well as doacross parallelism using tiling. To minimize
communication, the algorithm tries to find a static decomposition
that exploits the maximum degree of parallelism available in the
program such that there is no reorganization nor pipeline commu-
nication. The algorithm will trade off extra degrees of parallelism
to eliminate communication. If communication is needed, the algo-
rithm will try to reduce expensive reorganization communication to
inexpensive pipelined communication by tiling. Finally, any nec-
essary data reorganization communication is inserted into the least
frequently executed parts of the program.
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