
ar
X

iv
:1

90
9.

10
92

6v
2 

 [
cs

.C
R

] 
 2

5 
Fe

b 
20

20

ABC: Asynchronous Blockchain without Consensus

Jakub Sliwinski and Roger Wattenhofer
{jsliwinski,wattenhofer}@ethz.ch

ETH Zurich

ABSTRACT

We relax the definition of consensus for the purpose of an

efficient cryptocurrency and introduce a new blockchain ar-

chitecture called ABC that offers the typical functionality

of a cryptocurrency. By foregoing the assumption of estab-

lishing consensus, we are able to design ABC with an ar-

ray of advantages compared to typical blockchain protocols:

ABC is permissionless, deterministic, and resilient to com-

plete asynchrony. ABC features finality and does not rely

on wasteful proof-of-work.

Without establishing consensus, ABC cannot support cer-

tain applications, in particular smart contracts that are open

for interaction with unknown agents. However, our system

is an advantageous solution for many important use cases,

such as cryptocurrencies like Bitcoin.

1 INTRODUCTION

Nakamoto’s Bitcoin protocol [10] has taught the world how

to achieve trust without a designated trusted party. The Bit-

coin architecture provides an interesting deviation from clas-

sic distributed systems approaches, for instance by using

proof-of-work to allow anonymous participants to join and

leave the system at any point, without permission.

However, Bitcoin’s proof-of-work solution comes at se-

rious costs and compromises. The security of the system

is directly related to the amount of investments in desig-

nated proof-of-work hardware, and to spending energy to

run said hardware constantly, forever. Since the system’s

participants called miners bear significant costs, the proto-

col compensates them with Bitcoin for running this hard-

ware and spending energy. However, adversaries might dis-

rupt this scheme by bribing the miners to behave untruth-

fully or disrupt the reward payments.

To make matters worse, proof-of-work protocols assume

critical requirements related to the communication between

the participants regarding message loss and timing guaran-

tees. In otherwords, such protocols are vulnerable to attacks

on the underlying network.

In the decade since the original Bitcoin publication, re-

searchers have tried to address the wastefulness of proof-

of-work. One of the most prominent research directions is

replacing Bitcoin’s proof-of-work with a proof-of-stake ap-

proach. In proof-of-stake designs, miners are replaced with

participants who contribute to running the system accord-

ing to the amounts of cryptocurrency they hold. Alas, proof-

of-stake protocols require similar communication guaran-

tees as proof-of-work, and thus can be attacked by disrupt-

ing the network. Moreover, proof-of-stake introduces some

of its own problems. Prominently, existing proof-of-stake

designs critically rely on randomness. To achieve consensus,

the participants of such systems repeatedly choose a leader

among themselves. Despite being random, this choice needs

to be taken collectively and in a verifiable way, which com-

plicates the problem.

Due to theway blockchains typically process transactions,

participants have to wait significant amount of time before

they can be confident that their transactions are accepted by

the system. For example, it usually takes upwards of an hour

for merchants to accept Bitcoin transactions as confirmed,

which is unacceptable for time-sensitive applications.

In his seminal paper, Nakamoto made the crucial assump-

tion that his system has to be able to totally order the trans-

actions submitted to the system in order to reject the fraudu-

lent ones. However, meeting this requirement is equivalent

to solving the problem known in computer science as con-

sensus. Nakamoto’s assumption has shaped the design of

blockchain systems to this day. Thus, many blockchain sys-

tems achieve consensus while not taking advantage of this

powerful property, but suffering the associated costs.

Our Contribution. We relax the usual notion of consen-

sus to extract the requirements necessary for an efficient

cryptocurrency.Thuswe introduce an asynchronous blockchain

design that features an array of advantages compared to

alternatives. In other words, we present an Asynchronous

Blockchain without Consensus (ABC).

Asynchronous: ABC does not require the messages to

be delivered within any known period of time. Thus

ABC is fully resilient to all network-related threats,

such as delaying messages or network eclipse attacks.

An adversary having complete control of the network

can halt progress of the system (by simply disabling

communication), but cannot interfere with the proto-

col or trick the participants in any way. Previously ap-

proved transactions cannot be invalidated and imper-

missible transactions cannot be approved.

Permissionless: ABC is permissionless in the sameway

as existing proof-of-stake systems. Participants of ABC

1

http://arxiv.org/abs/1909.10926v2


Jakub Sliwinski and Roger Wa�enhofer

holding exchangeable cryptocurrency take part in ap-

proving new transactions.

Final: If the network communication is not disturbed,

in ABC transactions are instantly confirmed. Confir-

mation is final and impossible to revert, thus making

ABC a suitable solution for time-sensitive applications.

This is in contrast to systems such as Bitcoin, where

the confidence in a transaction being accepted only

increases with the passage of time.

Deterministic: We assume the functionality provided

by asymmetric encryption and hashing. Apart from

these cryptographic necessities, ABC is completely de-

terministic and surprisingly simple.

Proof-of-stake: Unlike proof-of-work, the security of

the system does not depend on the amount of devoted

resources such as energy, computational power, mem-

ory, etc. Instead, similarly to other proof-of-stake pro-

tocols, ABC requires that more than two thirds of the

system’s cryptocurrency is held by truthful participants.

Many important applications, such as cryptocurrencies,

do not require consensus [4], and ABC offers an advanta-

geous solution for those scenarios.

On the negative side, not being able to establish consen-

sus in the traditional sense prevents some more general ap-

plications frombeing feasible. Such applications involve smart

contracts open for interactionwith previously unknown agents.

For example, the functionality of Ethereum cannot be fully

implemented with ABC.

2 RELAXING CONSENSUS

A cryptocurrency needs to be resilient to some of the agents

behaving maliciously. The problem of establishing consen-

sus in such an environment is called Byzantine agreement.

The agents behaving truthfully are called honest, and mali-

cious agents are called Byzantine.

In the context of a cryptocurrency like Bitcoin, consensus

is used to solve the problem of double-spending. Suppose Al-

ice holds one cryptocurrency coin. Then Alice broadcasts a

transaction transferring her coin to Bob. Simultaneously, Al-

ice tries to cheat and broadcasts a transaction transferring

her coin to Carol. Upon receiving one of Alice’s transactions,

honest agents need to decide what happens to Alice’s coin

in agreement, preventing Bob and Carol from being tricked

into thinking otherwise. In this context, according to the

usual definition, achieving consensus consists of the follow-

ing requirements:

Definition (Consensus).

Agreement: If some honest agent accepts a transaction,

every honest agent will accept the same transaction. No

conflicting transactions are accepted.

All-Same-Validity: If the first transaction every honest

agent sees is the same, this transaction is accepted by

honest agents.

Termination Every honest agent accepts some transac-

tion in a finite time.

The key insight leading to the relaxation of this defini-

tion, is that if Alice misbehaves, it is a valid course of ac-

tion to ignore her transactions altogether. If Alice behaved

truthfully, she would issue only one of the conflicting trans-

actions. Thus, every honest agent would see the same trans-

action first. Hence we relax the consensus requirement in

the following way:

Definition (ABC Consensus).

Agreement: As above.

All-Same-Validity: As above.
All-Same-Termination If the first transaction every hon-

est agent sees is the same, this transaction is accepted by

honest agents in a finite time.

Under this relaxed notion of consensus, a cheating Alice

might end up not sending her coin the either Bob or Carol.

Some honest agents might see one of the transactions first,

while others might see the other first. Then our requirement

of All-Same-Termination does not apply, and the transac-

tions might stay without a resolution forever. This turn of

events can be seen as Alice losing her coin due to misbe-

haviour.

Otherwise Consensus and ABC Consensus do not differ.

Agreed upon results are final, conflicting results are pre-

cluded and honest agents have their transactions accepted

in finite time.

Surprisingly, despite the difference being so insignificant

with respect to the functioning of a cryptocurrency, this re-

laxation allows ABC to combine an unprecedented set of

advantages.

3 INTUITION

For simplicity of presentation, we describe ABC in the termi-

nology of a cryptocurrency. A more formal description fol-

lows in Section 5. As usual in cryptocurrencies, the main op-

eration is a transaction, which transfers cryptomoney from

one or more inputs to one or more outputs. Inputs and out-

puts are cryptocurrency amounts paired with keys required

to spend them. Every transaction refers to at least one pre-

vious transaction, such that all transactions form a directed

acyclic graph (DAG).

An agent holding the cryptomoney of an output delegates

said cryptomoney by indicating another agent devoted to

maintaining the system called validator. To indicate the val-

idator, outputs include a second public key. Validators can

2



ABC: Asynchronous Blockchain without Consensus

issue ’dummy’ transactions called acks referring other trans-

actions to acknowledge and confirm them. Every agent can

be indicated as the validator.

A transaction t is confirmed by the system if enough acks

(directly or indirectly) refer to t , without referring to other

transactions spending the same inputs. If a transaction re-

ceives enough support, no other transaction conflictingwith

t can become confirmed. In particular, if the owner after-

wards attempts to issue a transaction t ′ which is trying to

spend the same input(s) as t , the system will never confirm

t ′. If an owner issues two conflicting transactions t and t ′

at roughly the same time, it is possible that (a) either t or

t ′ gets confirmed (but not both), or (b) neither t nor t ′ are

ever confirmed. Case (b) happens if some validators see and

try to confirm t , while others see and try to confirm t ′. The

system might stay in this state forever with the validators’

approval split between t and t ′, with no clear majority. Cru-

cially, such a situation can only arise if the owner of t and

t ′ misbehaves.

The result is in every sense equivalent to the misbehav-

ing agent losing the cryptomoney he attempted to double-

spend, and does not constitute any threat to the system. The

two conflicting transactions will stay present in the transac-

tion DAG not influencing other transactions and the func-

tioning of the system in any way, despite neither of them

becoming confirmed. Agents can create new transactions

(directly or indirectly) referencing both t and t ′, not con-

tributing to either’s approval, essentially ignoring t and t ′.

It is somewhat intuitive to verify that such a system does

work correctly if the cryptocurrency amounts are statically

assigned to the validators, and a set of validators controlling

more than two-thirds of the cryptocurrency obeys the proto-

col. In Section 6 wewill show that our system still works cor-

rectly when the agents can freely exchange the cryptocur-

rency and change the appointed validators, undisturbed by

the harsh conditions of an asynchronous network. Thus, we

establish a system with the participation model similar to

proof-of-stake protocols, but much simpler.

4 MODEL

Our blockchain is used and maintained by its participants

called agents. Agentswho follow the protocol are called hon-

est. The set of agents who do not follow the protocol is con-

trolled by the adversary. The adversary behaves in an arbi-

trary way. At any time, the adversary can have legitimately

acquired less than one-third of the cryptocurrency present

in the system, as described precisely in Section 5.4.

4.1 Communication

We assume that all agents are connected by a virtual net-

work similar to Bitcoin’s, where agents can broadcast their

messages to all other agents. Like in Bitcoin, new agents can

join this network to receive new and prior messages. Agents

can also leave the network.

However, the network we assume is asynchronous and

thus much weaker than that required by Bitcoin. The ad-

versary controls the network, dictating when messages are

delivered and in what order. Messages are only required to

reach the recipient eventually, without any bound on the

time it might take. Under such weak network requirements,

an adversary delaying the delivery of messages can delay

the progress of an agent, but otherwise will not be able in-

terfere with the protocol or trick honest agents.

4.2 Cryptographic Primitives

Weassume the functionality of asymmetric encryptionwhere

a public key allows every agent to verify a signature of the

associated secret key. Agents can freely generate public/secret

key pairs.

We also assume cryptographic hashing, where for every

message a succinct, unique hash can be cheaply computed.

Whenever we mention references between transactions in

our protocol, we mean hashes that uniquely identify the ref-

erenced data.

Otherwise the protocol is completely deterministic.

5 PROTOCOL

In this section we describe the various components of the

protocol. We refer to the cryptocurrency managed by the

protocol as the money.

Outputs. Outputs are the basic unit of information. Out-

puts are included in transactions to identify money holders

and validators. An output contains:

• Value: A number representing the amount of money.

• Owner key: A public key. The agent holding the asso-

ciated secret key is the owner of the money.

• Validator key: A public key. The agent holding the as-

sociated secret key is indicated as the validator.

The owner controls the output. By saying that a message

is signed by an output o, we will mean that the message is

signed by the owner. In general, the agents could reuse their

keys for multiple outputs. However, for simplicity of presen-

tation, we do not introducemore data to identify the outputs

and assume that keys always uniquely identify outputs. Any

output is controlled by a single agent.

Genesis. The genesis is a set of outputs known upfront

to every agent. Genesis describes the initial distribution of

money among agents. The value of all initial outputs sums

up to 3f + 1.

3



Jakub Sliwinski and Roger Wa�enhofer

5.1 Transactions

Transactions are requests issued by the agents to spendmoney

to another agent. Outputs of transactions identify the owner

A of the money, and also indicate a validator - another agent

B devoted to maintaining the system, so that B can broad-

cast acks representing the money owner. This way, a small

number of validators can contribute to transaction confir-

mation for the whole network. The owner A can issue a

transaction to spend the money independently from B. If

A wants to change the validator, A can issue a transaction

spending money to itself that indicates a different validator.

Of course, any agent can also indicate itself as the validator.

On the other hand, the validator B can issue acks for A but

cannot spend the associated money.

Every transaction is either a spending transaction or an

ack. We refer to genesis as a transaction as well.

Transactions include references to other transactions. The

set of transactions reachable by following references from t

is called past(t).

Definition 1 (spending transaction). A spending transac-

tion t contains:

• A set of references to previous transactions.

• A set of outputs.

• A set of inputs, where each input is an output of a trans-

action in past(t). Transaction t is said to spend these

inputs.

The sum of values of the outputs is equal to the sum of values

of the inputs, and called the value of t .

The transaction is signed by the inputs. In other words, the

agent creating the transaction controls the inputs of the trans-

action.

Definition 2 (ack). An ack a contains a set of references to

previous transactions. For some output o, a and signed by the

validator key of o. The weight of a is the value of o and we say

a is associated with o.

All transactions can only reference previously created trans-

actions with hashes. Cyclic hash references are impossible

and hence all transactions form a directed acyclic graph (DAG).

5.2 Interpreting the DAG

Transactions are processed in an order respecting references.

If an agent receives a transaction t but has not observed

some transactions in past(t) yet, the agent cannot be sure

that t is in fact a transaction that does not reference invalid

data. Hence, the agent does not process t until past(t) is re-

ceived in full. Such a situation might be compared to receiv-

ing a block without knowing the parent block in the Bitcoin

blockchain.

→ (p1, 4)

→ (p2, 5)

→ (p3, 3)

Genesis

(p1, 4) → (p4, 2)

→ (p5, 2)

sign(s1)

(p2, 5) → (p6, 5)

sign(s2)

(p3, 3) → (p7, 1)

(p6, 5) → (p8, 2)

→ (p9, 5)

sign(s3 , s6)

Figure 1: Example DAG of spending transactions, val-

idator keys are omitted. The outputs of the genesis

are spent in the other three transactions. The pi ’s are
owner keys, and si ’s are the corresponding secret keys.

Definition 3 (past). The set of transactions reachable by fol-

lowing references from t is called past(t). For a set of transac-

tions T , past(T ) =
⋃

t ∈T past(t).

Every transaction t depends on transactions that had to

take place in order for t to be possible.

Definition4 (depends). If a transactionv spends one ormore

outputs of transaction u, then v depends on u. Dependence is

transitive and reflexive, i.e. every transaction depends on itself

and ifw depends on v and v depends on u, thenw depends on

u.

Any two transactions that together would produce an in-

consistent state of the system, such as double-spend trans-

actions, are said to conflict.

Definition 5 (conflicts). If two transactions u and v spend

the same output, they conflict. Moreover, for two conflicting

transactionsu,v , every transaction that depends onu conflicts

with every transaction that depends on v .

Transactions can be confirmed by the system, and con-

firmation is permanent. A transaction t becomes confirmed

when enough validators broadcast an ack to the network

that indicates t as the first transaction the validator observed

as spending given outputs. Intuitively, for a transaction t to

become confirmed, a set of acks Ct needs to reference t . If

these acks together account for more than two-thirds of the

money in the system, and there is no evidence of misbehav-

ior of the creator of t in past(Ct ), then t becomes confirmed.

From that point on, the acks Ct serve as the proof that t is

confirmed.

We now define how to interpret if an ack contributes to a

confirmation of a transaction i.e. if the ack is effective. Gen-

esis is confirmed from the start, effective acks are associted

with confirmed outputs, confirmed transactions are indicated

by effective acks, and so on.

4



ABC: Asynchronous Blockchain without Consensus

Definition 6 (effective ack). If an ack contributes to the con-

firmation of a transaction, we call it effective. An ack a asso-

ciated with an output o is effective for t if:

• The transaction outputting o is confirmed in past(a).

• No transaction in past(a) \ {t} spends o.

• Every unconfirmed transaction in past(a) that t depends

on is the only transaction in past(a) spending its inputs.

Definition 7 (confirmed). Some transactions become con-

firmed depending on the DAG. Genesis is by default confirmed.

A transaction t is confirmed if there exists a setCt of acks ef-

fective for t associated with different outputs that are unspent

in past(Ct ) \ {t}, such that the the sum of weights of acks in

Ct is at least 2f + 1.

Note that a single ack might be effective for a chain of de-

pendent transactions, such that adding the ack to the DAG

might confirm the chain at once, where there are no interme-

diate states with transactions being confirmed one by one.

5.3 Creating Transactions

Honest agents never attempt to spend the same output more

than once. In other words, honest agents do not create con-

flicting transactions. Whenever an honest agent created an

ack a1, this ack will be referenced by the next ack a2 the

same honest agent creates, i.e. a1 ∈ past(a2).

Algorithm 1: The protocol of issuing a new transaction

t .

1 Transaction t references all previously observed

transactions.

2 Broadcast transaction t to the network.

5.4 The Adversary

The adversary behaves in an arbitrary way, and thus might

create conflicting transactions that do not reference each

other and send them to different sets of recipients.

Anymessage sent by an honest agent is immediately seen

by the adversary. The delivery of eachmessage from an hon-

est agent to an honest agent can be delayed by the adversary

for an arbitrary amount of time.

Money controlled by the adversary. The value of all

initial outputs sums up to 3f + 1. We assume that the ad-

versary controls initial outputs summing up to at most f in

value. In other words, the adversary owns up to 1/3 of the

systems money at inception.

At any point the adversary can issue a transaction t send-

ing some amount of money y to an honest agent, where the

indicated validator is also an honest agent. The instant some

set of confirming acks exist for t , we decrease the amount

we count as owned by the adversary by y.

At any time, an honest player can issue a transaction send-

ing some amount of moneyy to the adversary, or indicating

the adversary as the associated validator. Then, we increase

the amount we count as owned by the adversary by y.

In other words, we assume that the adversary cannot le-

gitimately acquire (or be chosen as the validator for) more

than f of the system’s money.

6 DOUBLE-SPENDING

This section is devoted to proving that the presented proto-

col upholds ABC Consensus as defined in Section 2.

AssumingAgreement (that no conflicting transactions are

ever confirmed), at least 2f +1 of money is always delegated

to honest validators under the conditions described in Sec-

tion 5.4. Hence, if there is no alternative to a transaction t , t

is accepted by the system in finite time and thus All-Same-

Validity and All-Same-Termination hold.

Corollary 1. If Agreement holds, ABC protocol satisfies ABC

consensus.

We now focus on proving that if our assumptions are

met, it is impossible that any two conflicting transactions

are confirmed, otherwise known as the problem of double-

spending.

ProofOutline. For contradiction, assume that some trans-

action DAG can be produced by the protocol where two con-

flicting transactions x and y are confirmed. Consider the

instance of such G that is minimal in terms of the num-

ber of spending transactions. In Lemma 3 we show that G

does not contain any unconfirmed transactions. Consider

the first transaction t that becomes confirmed in G during

the protocol’s execution. In Lemma 4 we show that no trans-

action conflicting with t can become confirmed. In Lemma 6

we show that the validators of inputs of t could be replaced

with the validators of outputs of t from the start of the exe-

cution. In Theorem 7 we conclude that forG to be minimal,

t could be embedded in genesis with no difference to the

rest of the DAG. Hence, we arrive at a contradiction with

the choice of G .

Lemma 2. If a confirmed transaction u depends on v , v is

confirmed.

Proof. Since u depends on v , v ∈ past(u). Therefore, for

any ack a ∈ Cu , v ∈ past(a). Since dependence is transitive,

v depends on a subset of transactions that u depends on.

Hence, conditions of Definition 6 for v are subconditions of

the definition for u. Thus, a is effective for v , andCu is a set

of effective acks for v . By Definition 7, v is confirmed. �

Lemma 3. There are no unconfirmed transactions in G .

5



Jakub Sliwinski and Roger Wa�enhofer

→ (p1, 4)

→ (p2, 4)

→ (p3, 2)

Genesis

(p1, 4) → (p4, 3)

→ (p5, 1)
(p4, 3) → (p7, 3)

(p3, 2) → (p6, 2)

(p1, 4) → (p9, 4)

(p6, 2) → (p8, 5)

(p7, 3) →

v1

v2

v4

v2

Figure 2: Example transaction DAG. Every circle node labeledvi represents an ack sent by the validator of the out-

put pi . Blue transactions are confirmed based on the acks. For example, the transaction spending p3 is confirmed
by v2 and v4. Gray transaction t is an attempt at double-spending and will never be confirmed. The validator v4
references t , but there is another transaction spending the same output visible in the past of the ack, hence the

ack is not effective for t .

Proof. Suppose some unconfirmed transaction u exists

in G . Since u is unconfirmed, by Lemma 2 no confirmed

transaction depends on u.

By Definition 6 effective acks can only be issued by val-

idators indicated in confirmed transactions. Suppose u and

all dependent transactions were removed from G to obtain

G ′. Then, no effective ackwould be removed fromG . By Def-

inition 7 any transaction confirmed in G is also confirmed

inG ′, in particular x and y. However,G ′ contains less trans-

actions thanG , a contradiction with the choice ofG . �

Lemma 4. Suppose t is the first transaction confirmed in G

during the execution of the protocol. Then, no transaction con-

flicting with t can become confirmed inG .

Proof. Since t is the first transaction confirmed during

the execution of the protocol, by Definition 6 the only val-

idators that can issue effective acks up to that point are all

specified in genesis. Since the value of initial outputs for

which the adversary is the validator can amount up to f ,Ct

has to contain honest acks of value at least f + 1. Let V be

the validators that issued honest acks in Ct . By the proto-

col, V will only issue acks a such that t ∈ past(a). Hence V

cannot issue an effective ack for a transaction spending the

same inputs as t . Similarly, the validators specified in t can-

not issue effective acks for transactions spending the same

inputs as t .

By Definition 7, there are no transactions u ∈ past(Ct ) \

{t} spending outputs associated with V .

Hence, any further transaction can obtain effective acks

a such that t < past(a) of cumulative weight at most 2f .

Suppose for contradiction some transaction u that con-

flicts with t becomes confirmed. By Definition 5 and Lemma

2, there is a confirmed transaction u ′ spending the same in-

put as t . By above, there cannot be effective acks for u ′ of

cumulative weight more than 2f , a contradiction. �

Corollary 5. There is no transaction conflicting with t inG .

Lemma 6. Let t be the first transaction confirmed inG . There

is a DAGG ′where the set of confirmed transactions is the same

except not including t , where genesis contains the outputs of t

but does not contain the inputs of t .

Proof. LetVi be some validator associated with an input

of t and Vo be some validator associated with an output of

t . Consider some confirmed transaction u. Recall from the

proof of Lemma 4 that either u ∈ past(Ct ) or t ∈ past(Cu ).

Since t is spending the output ofVi ,Vi can only have issued

an effective ack for u if t < past(Cu ). Then u ∈ past(Ct ), and

for any effective ack a issued byVo , by Definition 6 we have

u ∈ past(a). Hence, if Vi and Vo issued an effective ack for u

and v respectively, u and v cannot conflict.

Thus, t could be embedded in genesis, and the validators

of the corresponding outputs can issue acks equivalent to

those in G . If inputs and outputs of t do not match in value,

genesis can contain smaller outputs that can combine to in-

puts or outputs of t in value. �

6



ABC: Asynchronous Blockchain without Consensus

Genesis

. . .

v

v1

v2

u

u1

u2

Figure 3: Example illustration of v ∈ past(Cu ). Trans-
actions ui are acks inCu and vi are acks inCv . If u and

v are confirmed, then v ∈ past(Cu ) or u ∈ past(Cv ).

Theorem 7. No DAG can be produced by the ABC protocol

such that a pair of confirmed transactions are conflicting.

Proof. Suppose t is the first transaction confirmed in G

during the execution of the protocol. By Corollary 5, no

transaction in G conflicts with t . By Lemma 6, a DAG G ′

could be obtained by embedding t in genesis, with other

transactions confirmed as in G , a contradiction with mini-

mality ofG . �

Corollary 8. ABC protocol satisfies ABC Consensus.

7 IMPROVEMENTS

7.1 Transaction Fees

To prevent spamming attacks and to incentivize maintain-

ing the system by the validators, transaction fees can be in-

troduced. We present a simple example fee structure, but of

course many alternative schemes are possible.

As acks only serve to confirm spending transactions, they

could pay no fee. Additionally, we could require acks to be

effective for a certain number of new transactions in order

to be valid, so that the volume of acks being broadcast is

decreased and to prevent ack spamming.

Since in our setting we refrain from establishing consen-

sus, wewill also refrain from attempting to choose an agreed

upon subset of validators that should receive the fee from a

particular transaction. Instead, we suggest that all validators

at any point are eligible to a portion of every transaction

fee. For example, the issuer of an ack a of weight w can be

granted additional amount ϵ to be spent as an output col-

lected from transactions:

ϵ =
w

3f + 1

∑

u ∈effective(a)

fee(u), (1)

where effective(a) is the set of transactions to which a is ef-

fective and fee(u) is the transaction fee paid by u. The fee

amount might depend on the size of the representation of u,

or the number of inputs and outputs in u can be limited by

the protocol.

7.2 Money Creation

If the fees are collected according to Equation (1), the fees

paid by transaction issuers equal the fees collected by those

confirming them, and the overall amount of money remains

the same over time. However, the system might be set up

so that the amount of cryptocurrency increases over time.

For example, the collected fee ϵ might be multiplied by a

constant α > 1. Assuming every agent possesses less than

one-third of the overall stake at any point, issuing transac-

tions would still incur a cost as long as α ≤ 3.

As an additional role in Bitcoin and related systems, proof-

of-work serves to distribute newly created money in an un-

biased way. ABC could employ proof-of-work for this pur-

pose as well. For this purpose, transactions could be allowed

to include proof-of-work and receive an extra amount of

stake to spend as an output. However, for these rewards to

vary over time, we would need to introduce some mecha-

nism for the protocol to record the passage of time, which

we leave as outside the scope of this work.

8 RELATEDWORK

Traditionally, distributed ledgers [1, 7] operate with a care-

fully selected committee of trusted machines. Such systems

are called permissioned. The committee repeatedly decides

which transactions to accept, using some form of consensus:

The committee agrees on a transaction, votes on and com-

mits that transaction, and only thenmoves forward to agree

on a next transaction.

Bitcoin [10] radically departed from this model and be-

came the first permissionless blockchain. In the Bitcoin sys-

tem, there is no fixed committee; instead, everybody can par-

ticipate. Bitcoin achieves this by using proof-of-work. Proof-

of-work is a randomized process tying computational power

and spent energy to the system’s security, while also requir-

ing synchronous communication. However, Bitcoin’s form

of consensus hardly satisfies the traditional consensus def-

inition. Instead of terminating at any point, the extent to

which the consensus is ensured raises over time, approach-

ing but never reaching certainty. More precisely, in Bitcoin

transactions are never finalized, and can be reverted with

ever decreasing probability.

Similarly to Bitcoin, ABC allows permissionless partici-

pation and does not conform to the traditional definition of

consensus. In contrast to Bitcoin, ABCdoes not rely onwast-

ing energy solely to run the system securely, works under

full asynchrony, does not rely on randomization, and pro-

hibits reverting committed transactions.

7



Jakub Sliwinski and Roger Wa�enhofer

To address the problems associated with proof-of-work,

proof-of-stake has been suggested, first in a discussion on

an online forum [11]. Proof-of-stake blockchains are man-

aged by participants holding a divisible and transferable dig-

ital resource, as opposed to holding hardware and spend-

ing energy. Rigorous academic works proposing proof-of-

stake systems include designs such as Ouroboros [6] or Al-

gorand [2]. Proof-of-stake blockchains seek to solve consen-

sus and thus rely on synchronous time. The use of (pseudo-

)randomization in proof-of-stake systems is notwithout com-

plications, and often considered a security risk. In contrast

to proof-of-stake systems, ABC allows for completely asyn-

chronous communication. ABC is also simpler.

In the work closest related to ours, Gupta [5] proposes a

permissioned transaction system that does not rely on con-

sensus. In this design, a static set of validators is designated

to confirm transactions in a manner similar to ours.

The authors of [4] show that the consensus number of

a Bitcoin-like cryptocurrency is 1, or in other words, that

consensus is not needed. The paper provides an analysis and

discussion of which applications rely on consensus and to

what extent, all of which is directly relevant to ABC. The

authors also argue that parallels can be drawn between a

permissioned transaction system and the problem of reliable

broadcast [8].

The authors of [9] provide an asynchronous permissioned

system by relying on advanced cryptographic techniques.

The main differences from ABC are that the system is per-

missioned, much more involved, reliant on randomization,

and offers consensus.

The authors of [3] introduce a protocol based on reliable

broadcast that allows participants to join and leave the sys-

tem. In contrast to ABC, the protocol consists of multiple

rounds of communication to agree on nodes joining or leav-

ing the system and does not feature a functionality to del-

egate one’s role in maintaining the system. Node commu-

nication volume increases with the number of participants,

therefore it cannot be applied in permissionless contexts.

9 CONCLUSIONS

In this paperwe presented ABC, an asynchronous blockchain

without consensus. ABC provides the functionality of Bit-

coin without consensus, without proof-of-work, without re-

quiring synchronous communication,without relying on ran-

domness, fast and with finality. The design of ABC is ar-

guably the simplest possible design for awhole set of blockchain

applications.

ABC provides an advantageous solution for applications

like cryptocurrencies, where truthful participants do not gen-

erate conflicting status updates. However, a smart contract

platform like Ethereum requires consensus to function, and

it is not possible to build an equivalent system using the

ABC protocol.

REFERENCES
[1] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault

tolerance. In OSDI, Vol. 99. 173–186.

[2] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nicko-

lai Zeldovich. 2017. Algorand: Scaling byzantine agreements for cryp-

tocurrencies. In Proceedings of the 26th Symposium on Operating Sys-

tems Principles. ACM, 51–68.

[3] Rachid Guerraoui, Jovan Komatovic, and Dragos-Adrian Seredinschi.

2020. Dynamic Byzantine Reliable Broadcast [Technical Report].

arXiv preprint arXiv:2001.06271 (2020).

[4] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and

Dragos-Adrian Seredinschi. 2019. The Consensus Number of a Cryp-

tocurrency. In Proceedings of the 2019 ACM Symposium on Principles

of Distributed Computing. ACM, 307–316.

[5] Saurabh Gupta. 2016. A Non-Consensus Based Decentralized Financial

Transaction Processing Model with Support for Efficient Auditing. Mas-

ter’s thesis.

[6] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. 2017. Ouroboros: A provably secure proof-of-stake

blockchain protocol. In Annual International Cryptology Conference.

Springer, 357–388.

[7] Leslie Lamport. 1998. The part-time parliament. ACM Transactions

on Computer Systems (TOCS) 16, 2 (1998), 133–169.

[8] Dahlia Malkhi, Michael Merritt, and Ohad Rodeh. 1997. Secure reli-

able multicast protocols in aWAN. In Proceedings of 17th International

Conference on Distributed Computing Systems. IEEE, 87–94.

[9] AndrewMiller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016.

The honey badger of BFT protocols. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. ACM,

31–42.

[10] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-

tem. http://bitcoin.org/bitcoin.pdf . (2008).

[11] QuantumMechanic. 2011. https://bitcointalk.org/index.php?topic=27787.0.

8

http://bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=27787.0

	Abstract
	1 Introduction
	2 Relaxing Consensus
	3 Intuition
	4 Model
	4.1 Communication
	4.2 Cryptographic Primitives

	5 Protocol
	5.1 Transactions
	5.2 Interpreting the DAG
	5.3 Creating Transactions
	5.4 The Adversary

	6 Double-spending
	7 Improvements
	7.1 Transaction Fees
	7.2 Money Creation

	8 Related Work
	9 Conclusions
	References

